Package: htrSPRanalysis (via r-universe)

October 27, 2024

Type Package

Title Analysis of Surface Plasmon Resonance Data

Version 0.1.0

Description Analysis of Surface Plasmon Resonance (SPR) and Biolayer Interferometry data, with automations for high-throughput SPR. This version of the package fits the 1: 1 binding model, with and without bulkshift. It offers optional local or global Rmax fitting. The user must provide a sample sheet and a Carterra output file in Carterra's current format. There is a utility function to convert from Carterra's old output format. The user may run a custom pipeline or use the provided 'Runscript', which will produce a pdf file containing fitted Rmax, ka, kd and standard errors, a plot of the sensorgram and fits, and a plot of residuals. The script will also produce a .csv file with all of the relevant parameters for each spot on the SPR chip.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, markdown, qpdf

Imports magrittr, readxl, openxlsx, minpack.lm, zoo, stats, gridExtra, grid, parallel, readr, rlang, dplyr, stringr, tidyselect, ggplot2, purrr, forcats, tibble, tidyr

VignetteBuilder knitr

NeedsCompilation no

Author Janice McCarthy Developer [aut, cre, cph], Kan Li Dev [aut], S. Moses Dennison [aut], Georgia D. Tomaras [aut]

Maintainer Janice McCarthy Developer < janice.mccarthy@duke.edu>

Date/Publication 2024-08-26 15:50:06 UTC

Repository https://janice-mccarthy.r-universe.dev

RemoteUrl https://github.com/cran/htrSPRanalysis

2 create_csv

RemoteRef HEAD

RemoteSha c5fc644a078570b66d4755140f3411e5f6469a61

Contents

	create_csv	2
	create_pdf	3
	get_fits	3
	get_fitted_plots	4
	get_plots_before_baseline	4
	get_rc_plots	5
	process_input	5
Index		8

create_csv

Create csv file with all fit parameters.

Description

Create csv file with all fit parameters.

Usage

```
create_csv(processed_input, fits_list)
```

Arguments

```
processed_input
```

Processed_input as returned by process_input

Value

a data frame with the fit parameters and errors. A csv file is also created using the path name supplied to $process_input$

create_pdf 3

create_pdf	Create pdf file with sensorgrams with fitted curves, residuals, table of fit parameters, and response curves.
------------	---

Description

Create pdf file with sensorgrams with fitted curves, residuals, table of fit parameters, and response curves.

Usage

```
create_pdf(processed_input, fits_list, rc_list, plot_list, ...)
```

Arguments

processed_input

Processed_input as returned by process_input

fits_list List of fits as returned by get_fits

rc_list List of response curves as returned by get_rc_plots plot_list List of plots as returned by get_fitted_plots

... Arguments passed to the pdf function.

Value

NULL A pdf file is created using the path name supplied to process_input

get_fits	Get fits of all selected sensorgrams as indicated in the sample information.

Description

Get fits of all selected sensorgrams as indicated in the sample information.

Usage

```
get_fits(processed_input)
```

Arguments

```
processed_input
```

The processed_input object returned by the function process_input.

Value

A list of all fits. The fits are performed using the safely function, so that the list has a \$result entry and a \$error entry for each item. If \$error is NULL, the sensorgram was fit successfully.

get_fitted_plots

Plot fitted sensorgras and raw data.

Description

Plot fitted sensorgras and raw data.

Usage

```
get_fitted_plots(processed_input, fits_list)
```

Arguments

```
processed_input
```

processed_input as returned by process_input

Value

list of plots of sensorgrams and fits

```
get_plots_before_baseline
```

Plot all raw data that has been selected to be processed (via the Incl. column in the sample information). No adjustments are made to the data.

Description

Plot all raw data that has been selected to be processed (via the Incl. column in the sample information). No adjustments are made to the data.

Usage

```
get_plots_before_baseline(processed_input)
```

Arguments

```
processed_input
```

The list file that is output from the process_input function.

Value

A list of all plots that have been selected via the Incl. column in sample information

get_rc_plots 5

get_rc_plots	Plot response curve. Average RU versus log 10 of concentration. Color coded for concentrations selected for fitting.
	coded for concentrations selected for futing.

Description

Plot response curve. Average RU versus log10 of concentration. Color coded for concentrations selected for fitting.

Usage

```
get_rc_plots(processed_input)
```

Arguments

```
processed_input
```

Processed input object as returned from process_input function.

Value

list of plots of response curves, indicating the concentrations chosen for fitting

process_input

Process user input files and obtain options for fitting.

Description

Performs all functions selected in sample information, such as automated dissociation window detection, automated concentration range, automated bulk shift detection and returns a list object with the titration time series, processed sample information, all user inputs directing file outputs and fitting options

Usage

```
process_input(
   sample_sheet_path = NULL,
   data_file_path = NULL,
   output_file_path = NULL,
   output_pdf = NULL,
   output_csv = NULL,
   error_pdf = NULL,
   num_cores = NULL,
   min_allowed_kd = 10^(-5),
   max_iterations = 1000,
   ptol = 10^(-10),
   ftol = 10^(-10),
```

6 process_input

```
min_RU_tol = 20,
max_RU_tol = 300
```

Arguments

sample_sheet_path

The full path to the sample information file.

data_file_path The full path to the titration data file.

output_file_path

The full path where output should be stored. This directory needs to exist.

output_pdf The name of the file for the pdf output.

output_csv The name of the file for the csv output.

error_pdf The name of the file for error output.

num_cores The number of cores to use for parallel processing. The default is(the number

of cores detected by parallel::detectCores().

min_allowed_kd The minimum value for the dissociation constant. The default is 10^(-5). max_iterations The maximum number of iterations for curve fitting. The default is 1000.

ptol Curve fitting parameter. If the proposed changes in parameters is smaller than

this value, the optimization is considered converged. The default is 10⁽⁻¹⁰⁾

ftol Curve fitting parameter. If the squared error between observed and predicted

values is smaller than ftol, the optimization is considered converged. The default

is 10^(-10)

min_RU_tol Minimum RU required for dissociation window detection

max_RU_tol Maximum RU required for dissociation window detection. Also used in curve

fitting.

Value

A list object containing the following

expanded_sample_sheet

The sample sheet expanded to include all spots that are represented, expanding

the short-hand entries for Position/Block/Channel

sample_info The expanded sample sheet with only the rows that are to be fit

sample_info_fits

The sample_info without rows that have encountered errors in initial processing

Time The dataframe whose columns are the Time values for the input titration data.

This only includes columns selected for analysis.

RU The dataframe whose columns are the RU values for the input titration data.

Only the columns for the samples to be analyzed are included

correctedRU The RU dataframe after baseline correction

keep_concentrations

A vector containing the indices of the columns from Time and correctedRU to

be used in curve fitting

process_input 7

all_concentrations_values

A vector containing the concentration values corresponding to the columns of the Time and RU dataframes

incl_concentrations_values

A vector containing the concentration values corresponding to the Time and correctedRU columns chosen for curve fitting

max_RU_tol The maximum RU for dissociation window trimming to be automated min_RU_tol The minimum RU for dissociation window trimming to be automated min_RU_tol The minimum RU for dissociation window trimming to be automated

nwells The number of rows in the sample_info dataframe

n_fit_wells The number of rows in the sample_info_fits dataframe

The ftol parameter passed to the nls.lm function

The ptol parameter passed to the nls.lm function

The ptol parameter passed to the nls.lm function

The ptol parameter passed to the nls.lm function

output_pdf The full pathname for the output pdf file output_csv The full pathname for the output csv file

error_pdf The full pathname for the pdf error file. This is where errors in processing can

be found.

error_idx_concentrations

If there is an issue in determining the concentration window for some spots, they will be logged here

Examples

Index

```
create_csv, 2
create_pdf, 3

get_fits, 3
get_fitted_plots, 4
get_plots_before_baseline, 4
get_rc_plots, 5

process_input, 5
```